Package arc.math.geom

Interface Vector<T extends Vector<T>>

All Known Implementing Classes:
Vec2, Vec3

public interface Vector<T extends Vector<T>>
Encapsulates a general vector. Allows chaining operations by returning a reference to itself in all modification methods. See Vec2 and Vec3 for specific implementations.
  • Method Summary

    Modifier and Type
    Method
    Description
    add(T v)
    Adds the given vector to this vector
    clamp(float min, float max)
    Clamps this vector's length to given min and max values
    cpy()
     
    div(T other)
    Inverse of scl()
    float
    dot(T v)
     
    float
    dst(T v)
     
    float
    dst2(T v)
    This method is faster than dst(Vector) because it avoids calculating a square root.
    boolean
    epsilonEquals(T other, float epsilon)
    Compares this vector with the other vector, using the supplied epsilon for fuzzy equality testing.
    boolean
     
    boolean
     
    interpolate(T target, float alpha, Interp interpolator)
    Interpolates between this vector and the given target vector by alpha (within range [0,1]) using the given Interpolation method.
    boolean
    isCollinear(T other)
     
    boolean
    isCollinear(T other, float epsilon)
     
    boolean
     
    boolean
    isCollinearOpposite(T other, float epsilon)
     
    boolean
    isOnLine(T other)
     
    boolean
    isOnLine(T other, float epsilon)
     
    boolean
     
    boolean
    isPerpendicular(T other, float epsilon)
     
    boolean
     
    boolean
    isUnit(float margin)
     
    boolean
     
    boolean
    isZero(float margin)
     
    float
    len()
     
    float
    This method is faster than len() because it avoids calculating a square root.
    lerp(T target, float alpha)
    Linearly interpolates between this vector and the target vector by alpha which is in the range [0,1].
    limit(float limit)
    Limits the length of this vector, based on the desired maximum length.
    limit2(float limit2)
    Limits the length of this vector, based on the desired maximum length squared.
    default T
    minus(T other)
     
    mulAdd(T v, float scalar)
    First scale a supplied vector, then add it to this vector.
    mulAdd(T v, T mulVec)
    First scale a supplied vector, then add it to this vector.
    nor()
    Normalizes this vector.
    default T
    plus(T other)
     
    scl(float scalar)
    Scales this vector by a scalar
    scl(T v)
    Scales this vector by another vector
    set(T v)
    Sets this vector from the given vector
    setLength(float len)
    Sets the length of this vector.
    setLength2(float len2)
    Sets the length of this vector, based on the square of the desired length.
    Sets this vector to the unit vector with a random direction
    Sets the components of this vector to 0
    sub(T v)
    Subtracts the given vector from this vector.
    default T
    times(T other)
     
    default T
     
  • Method Details

    • cpy

      T cpy()
      Returns:
      a copy of this vector
    • len

      float len()
      Returns:
      The euclidean length
    • len2

      float len2()
      This method is faster than len() because it avoids calculating a square root. It is useful for comparisons, but not for getting exact lengths, as the return value is the square of the actual length.
      Returns:
      The squared euclidean length
    • limit

      T limit(float limit)
      Limits the length of this vector, based on the desired maximum length.
      Parameters:
      limit - desired maximum length for this vector
      Returns:
      this vector for chaining
    • limit2

      T limit2(float limit2)
      Limits the length of this vector, based on the desired maximum length squared.

      This method is slightly faster than limit().

      Parameters:
      limit2 - squared desired maximum length for this vector
      Returns:
      this vector for chaining
      See Also:
    • setLength

      T setLength(float len)
      Sets the length of this vector. Does nothing if this vector is zero.
      Parameters:
      len - desired length for this vector
      Returns:
      this vector for chaining
    • setLength2

      T setLength2(float len2)
      Sets the length of this vector, based on the square of the desired length. Does nothing if this vector is zero.

      This method is slightly faster than setLength().

      Parameters:
      len2 - desired square of the length for this vector
      Returns:
      this vector for chaining
      See Also:
    • clamp

      T clamp(float min, float max)
      Clamps this vector's length to given min and max values
      Parameters:
      min - Min length
      max - Max length
      Returns:
      This vector for chaining
    • set

      T set(T v)
      Sets this vector from the given vector
      Parameters:
      v - The vector
      Returns:
      This vector for chaining
    • sub

      T sub(T v)
      Subtracts the given vector from this vector.
      Parameters:
      v - The vector
      Returns:
      This vector for chaining
    • nor

      T nor()
      Normalizes this vector. Does nothing if it is zero.
      Returns:
      This vector for chaining
    • add

      T add(T v)
      Adds the given vector to this vector
      Parameters:
      v - The vector
      Returns:
      This vector for chaining
    • dot

      float dot(T v)
      Parameters:
      v - The other vector
      Returns:
      The dot product between this and the other vector
    • scl

      T scl(float scalar)
      Scales this vector by a scalar
      Parameters:
      scalar - The scalar
      Returns:
      This vector for chaining
    • scl

      T scl(T v)
      Scales this vector by another vector
      Returns:
      This vector for chaining
    • div

      T div(T other)
      Inverse of scl()
    • dst

      float dst(T v)
      Parameters:
      v - The other vector
      Returns:
      the distance between this and the other vector
    • dst2

      float dst2(T v)
      This method is faster than dst(Vector) because it avoids calculating a square root. It is useful for comparisons, but not for getting accurate distances, as the return value is the square of the actual distance.
      Parameters:
      v - The other vector
      Returns:
      the squared distance between this and the other vector
    • lerp

      T lerp(T target, float alpha)
      Linearly interpolates between this vector and the target vector by alpha which is in the range [0,1]. The result is stored in this vector.
      Parameters:
      target - The target vector
      alpha - The interpolation coefficient
      Returns:
      This vector for chaining.
    • interpolate

      T interpolate(T target, float alpha, Interp interpolator)
      Interpolates between this vector and the given target vector by alpha (within range [0,1]) using the given Interpolation method. the result is stored in this vector.
      Parameters:
      target - The target vector
      alpha - The interpolation coefficient
      interpolator - An Interpolation object describing the used interpolation method
      Returns:
      This vector for chaining.
    • setToRandomDirection

      T setToRandomDirection()
      Sets this vector to the unit vector with a random direction
      Returns:
      This vector for chaining
    • isUnit

      boolean isUnit()
      Returns:
      Whether this vector is a unit length vector
    • isUnit

      boolean isUnit(float margin)
      Returns:
      Whether this vector is a unit length vector within the given margin.
    • isZero

      boolean isZero()
      Returns:
      Whether this vector is a zero vector
    • isZero

      boolean isZero(float margin)
      Returns:
      Whether the length of this vector is smaller than the given margin
    • isOnLine

      boolean isOnLine(T other, float epsilon)
      Returns:
      true if this vector is in line with the other vector (either in the same or the opposite direction)
    • isOnLine

      boolean isOnLine(T other)
      Returns:
      true if this vector is in line with the other vector (either in the same or the opposite direction)
    • isCollinear

      boolean isCollinear(T other, float epsilon)
      Returns:
      true if this vector is collinear with the other vector (isOnLine(Vector, float) && hasSameDirection(Vector)).
    • isCollinear

      boolean isCollinear(T other)
      Returns:
      true if this vector is collinear with the other vector (isOnLine(Vector) && hasSameDirection(Vector)).
    • isCollinearOpposite

      boolean isCollinearOpposite(T other, float epsilon)
      Returns:
      true if this vector is opposite collinear with the other vector (isOnLine(Vector, float) && hasOppositeDirection(Vector)).
    • isCollinearOpposite

      boolean isCollinearOpposite(T other)
      Returns:
      true if this vector is opposite collinear with the other vector (isOnLine(Vector) && hasOppositeDirection(Vector)).
    • isPerpendicular

      boolean isPerpendicular(T other)
      Returns:
      Whether this vector is perpendicular with the other vector. True if the dot product is 0.
    • isPerpendicular

      boolean isPerpendicular(T other, float epsilon)
      Parameters:
      epsilon - a positive small number close to zero
      Returns:
      Whether this vector is perpendicular with the other vector. True if the dot product is 0.
    • hasSameDirection

      boolean hasSameDirection(T other)
      Returns:
      Whether this vector has similar direction compared to the other vector. True if the normalized dot product is > 0.
    • hasOppositeDirection

      boolean hasOppositeDirection(T other)
      Returns:
      Whether this vector has opposite direction compared to the other vector. True if the normalized dot product is < 0.
    • epsilonEquals

      boolean epsilonEquals(T other, float epsilon)
      Compares this vector with the other vector, using the supplied epsilon for fuzzy equality testing.
      Returns:
      whether the vectors have fuzzy equality.
    • mulAdd

      T mulAdd(T v, float scalar)
      First scale a supplied vector, then add it to this vector.
      Parameters:
      v - addition vector
      scalar - for scaling the addition vector
    • mulAdd

      T mulAdd(T v, T mulVec)
      First scale a supplied vector, then add it to this vector.
      Parameters:
      v - addition vector
      mulVec - vector by whose values the addition vector will be scaled
    • setZero

      T setZero()
      Sets the components of this vector to 0
      Returns:
      This vector for chaining
    • plus

      default T plus(T other)
    • minus

      default T minus(T other)
    • unaryMinus

      default T unaryMinus()
    • times

      default T times(T other)